
Databases and Tools for High Throughput Sequencing Analysis

Actore (鄧致剛); YM Yeh (葉元鳴) Bioinformatics Center, Chang Gung University.

High-throughput Sequencing (HTSeq) Platforms

- 454 Sequencing / Roche
 - GS Junior System
 - GS FLX+ System
- Illumina
 - NovaSeq System
 - HiSeq System
 - NextSeq
 - MiniSeq/MiSeq
- Ion Torrent / Thermo
 - Personal Genome Machine
 - Proton
 - S5/S5XL
- Pacific Biosciences
 - PacBio RS
- Oxford Nanopore Teechnologies
 - MinION

Developments in high throughput sequencing

NovaSeq System Specifications

Sequencing Output per Flow Cell

	NovaSeq 5000 a	nd 6000 Systems	NovaSeq 6	000 Sy
Flow Cell Type	S1*	S2	S3*	S4*
2 × 50 bp	up to 167 Gb	280–333 Gb	NA**	NA**
2 × 100 bp	up to 333 Gb	560–667 Gb	NA**	NA**
2 × 150 bp	up to 500 Gb	850–1000 Gb	up to 2000 Gb	up to 3000 Gb

Specifications based on Illumina PhiX control library at supported cluster densities.

*The NovaSeq 5000 System, NovaSeq 5000 System Upgrade, and NovaSeq Reagent Kits with S1, S3, or S4 flow cells are not currently available for order.

** NA: not applicable

Quality Scores[†] and Run Time^{††}

	NovaSeq 6000 System				
Flow Cell Type	S2				
Read Length	2 × 50 bp	2 × 100 bp	2 × 150 bp		
Quality Score (percent of bases above Q30)	≥ 85 %	≥ 80 %	≥ 75 %		

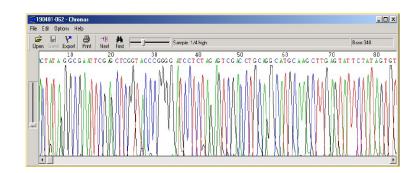
Estimated Sample Throughput for Key Applications^{†††}

	NovaSeq 5000	and 6000 Systems	NovaSeq 6000 System		
Flow Cell Type	S1*	S2	S3*	S4*	
Human Genomes per Run	up to 8	up to 16	up to 32	up to 48	
Exomes per Run	up to 66	up to 132			
Transcriptomes per Run	up to 66	up to 132			

+++ All sample throughputs are estimates and are based on dual flow cell runs. Human Genomes assumes > 120 Gb of data per sample to achieve $30 \times$ genome coverage. Exomes assumes $\geq 50M$ reads at $\geq 2 \times 75$ bp. Transcriptomes assumes $\geq 50M$ reads at $\geq 2 \times 50$ bp.

Compare the Illumina High-throughput machine

	S1	S2	S 3	S 4	2500 HO	4000	X
Reads per flowcell (billion)	1.6	3.3	6.6	10	2	2.8	3.44
Lanes per flowcell	2	2	4	4	8	8	8
Reads per lane (million)	800	1650	1650	2500	250	350	430
Throughput per lane (Gb)	240	495	495	750	62.5	105	129
Throughput per flowcell (Gb)	480	990	1980	3000	500	840	1032
Total Lanes	4	4	8	8	16	16	16
Total Flowcells	2	2	2	2	2	2	2
Run Throughput (Gb)	960	1980	3960	6000	1000	1680	2064
Run Time (days)	2-2.5	2-2.5	2-2.5	2-2.5	6	3.5	3



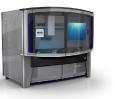
Interpreting raw data

Raw Data Format: fasta

• fasta (Sanger)

FASTA

Header line ">" Sequence


>MCHU - Calmodulin - Human, rabbit, bovine, rat, and chicken ADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMINEVDADGNGTID FPEFLTMMARKMKDTDSEEEIREAFRVFDKDGNGYISAAELRHVMTNLGEKLTDEEVDEMIREA DIDGDGQVNYEEFVQMMTAK*

>gi|5524211|gb|AAD44166.1| cytochrome b [Elephas maximus maximus] LCLYTHIGRNIYYGSYLYSETWNTGIMLLLITMATAFMGYVLPWGQMSFWGATVITNLFSAIPYIGTNLV EWIWGGFSVDKATLNRFFAFHFILPFTMVALAGVHLTFLHETGSNNPLGLTSDSDKIPFHPYYTIKDFLG LLILLLLLLALLSPDMLGDPDNHMPADPLNTPLHIKPEWYFLFAYAILRSVPNKLGGVLALFLSIVIL GLMPFLHTSKHRSMMLRPLSQALFWTLTMDLLTLTWIGSQPVEYPYTIIGQMASILYFSIILAFLPIAGX IENY

Extension +	Meaning 🗢	Notes 🔶
fasta (.fas)	generic fasta	Any generic fasta file. Other extensions can be fa, seq, fsa
fna	fasta nucleic acid	Used generically to specify nucleic acids.
ffn	FASTA nucleotide of gene regions	Contains coding regions for a genome.
faa	fasta amino acid	Contains amino acids. A multiple protein fasta file can have the more specific extension mpfa.
frn	FASTA non-coding RNA	Contains non-coding RNA regions for a genome, in DNA alphabet e.g. tRNA, rRNA

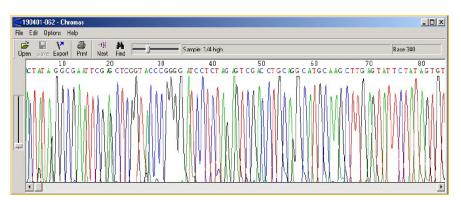
All Platforms have Errors

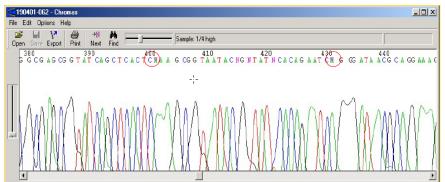
Illumina

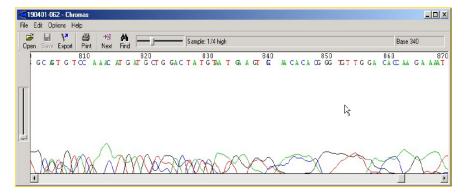
SoLiD

Ion Torrent

Roche 454


54 PacBio


Nanopore


- 1. Removal of low quality bases/ Low complexity regions
- 2. Removal of adaptor sequences
- 3. Homopolymer-associated base call errors (3 or more identical DNA bases) causes higher number of (artificial) frameshifts

Technology	Run Type		Maximum Read Length	Quality Scores	Error Rates	
	Single-read	Paired-end	Mate-pair			
Illumina	Х	Х	Х	300 bp	> Q30	0.0034 - 1%
SOLiD	Х	Х	Х	75 bp	> Q30	0.01 – 1%
IonTorrent	Х	Х		400 bp	~ Q20	1.78%
454	Х	Х		~700 bp (up to 1 Kb)	> Q20	1.07 – 1.7%
Nanopore	Х			5.4 – 10 Kb	NAY	10-40%
PacBio	х			~15 Kb (up to 40 Kb)	< Q10	5 - 10%

Trace File

High quality region - NO ambiguities (Ns)

Medium quality region - SOME ambiguities (Ns)

Poor quality region - LOW confidence

Accessing Quality: phred scores

Phred quality scores were originally developed by the program Phred to help in the automation of DNA sequencing in the Human Genome Project. Phred quality scores are assigned to each base call in automated sequencer traces.^{[1][2]} Phred quality scores have become widely accepted to characterize the quality of DNA sequences, and can be used to compare the efficacy of different sequencing methods. Perhaps the most important use of Phred quality scores is the automatic determination of accurate, quality-based consensus sequences.

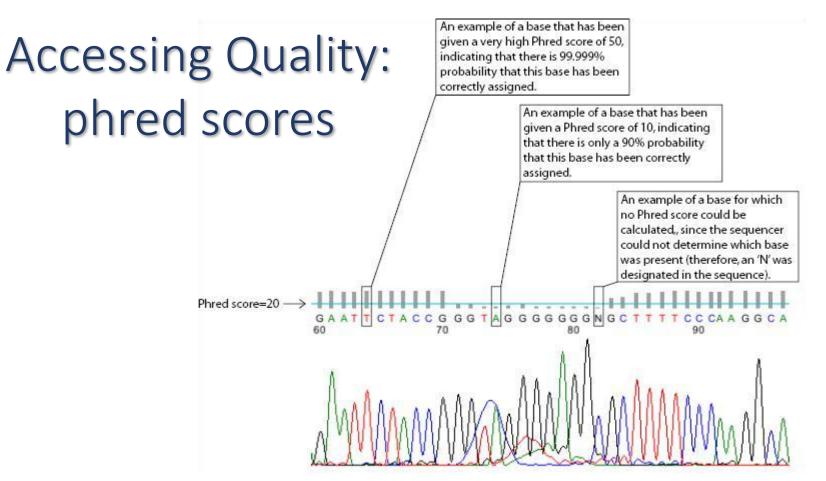
http://en.wikipedia.org/wiki/Phred_quality_score

 $Q = -10 \log_{10} P$

P=error probability of a given base call

Genome Research 8: 175-185, 1998

Base-Calling of Automated Sequencer Traces Using *Phred.* I. Accuracy Assessment


Brent Ewing,¹ LaDeana Hillier,² Michael C. Wendl,² and Phil Green^{1,3}

¹Department of Molecular Biotechnology, University of Washington, Seattle, Washington 98195-7730 USA; ²Genome Sequencing Center, Washington University School of Medicine, Saint Louis, Missouri 63108 USA

Genome Research 8: 186-194, 1998 Base-Calling of Automated Sequencer Traces Using Phred. II. Error Probabilities

Brent Ewing and Phil Green¹

Department of Molecular Biotechnology, University of Washington, Seattle, Washington 98195-7730 USA

Phred quality scores are logarithmically linked to error probabilities

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%
60	1 in 1,000,000	99.9999%

Raw Data Format: fastq

- FASTA
 - Header line ">"
 - Sequence
- FASTQ

@NA12878:1463:NA12892:NA12891:F_IL20_290:1:80:114:644 TTTGCATTTAACAAATAATATGAGAACCGTTGACTG

5@<?3@@5@7@AAABB1A;;;;BBABABB<@==<9/. @NA12878:1463:NA12892:NA12891:F_IL20_290:3:97:342:584 GCATTTAACAAATAATATGAGAACCGTTGACTGAAA

@@AA@AAABAAABBABBABB>>BABAACA=@@A@<< @NA12891:1463:::M_IL6_344:6:73:359:297.2 FTTCAGTCAACGGTTCTCATATTATTTGTTAAATGC

???>>??@?@@@AAA;A@AAA@:@@AA@@;4-4;:

- Add QVs encoded as single byte ASCII codes
- Most aligners accept FASTA/Q as input
- Issue: data is volumous (2 bytes per base for FASTQ)
- Do PHRED scaled values provide the most information?

Raw Data Format: fastq

@SEQ ID GATTTGGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT +

!''*(((((***+))%%%%++)(%%%%%).1***-+*''))**55CCF>>>>CCCCCCC65

@SRR001666.1 071112 SLXA-EAS1 s 7:5:1:817:345 length=36 GGGTGATGGCCGCTGCCGATGGCGTCAAATCCCACC +SRR001666.1 071112 SLXA-EAS1 s 7:5:1:817:345 length=36 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTG9TC

@HWI-E4 9 30WAF:1:1:8:308

TCCACATCAGAGGCCATGGCCACCAGGCCCAGGAT

+HWI-E4 9 30WAF:1:1:8:308

aaaaXaaabaa^aaLaaLLa^a^^VV\aaaaaaaa

@HWI-E4 9 30WAF:1:1:9:947

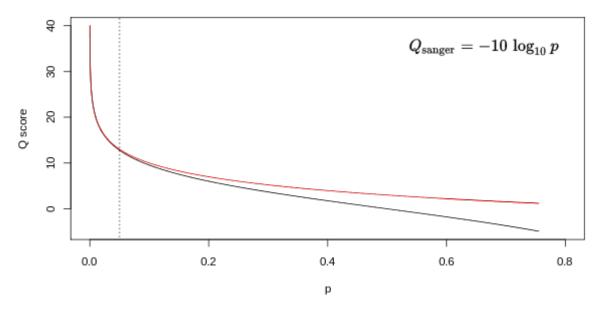
CCAATGTGGTCATAGGTGACAACCTTCTCCTCGCT

+HWI-E4 9 30WAF:1:1:9:947

d b

@HWI-E4 9 30WAF:1:1:9:1505

GGAAGCCAGGACCCACCATGAGTAGCATACATCTG


`F:1:1:9:1505

Raw Data Format: fastq

@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACG

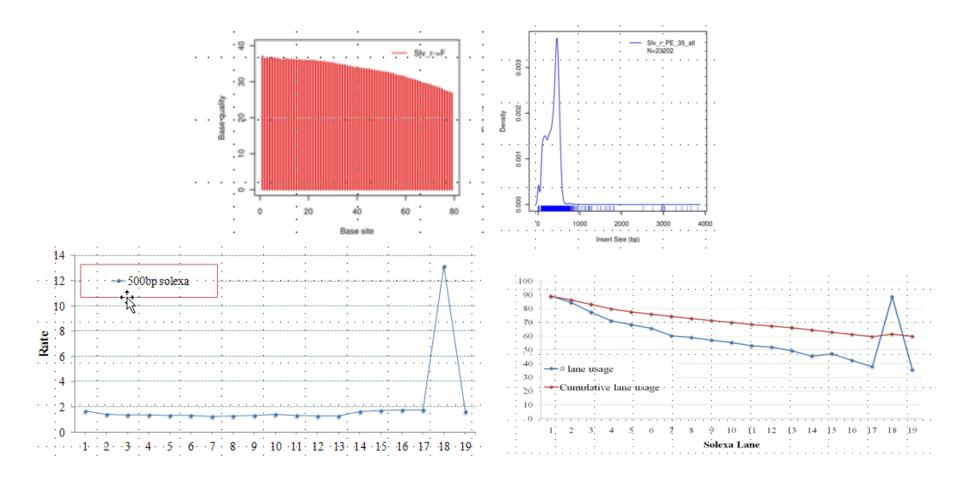
EAS139	the unique instrument name
136	the run id
FC706VJ	the flowcell id
2	flowcell lane
2104	tile number within the flowcell lane
15343	'x'-coordinate of the cluster within the tile
197393	'y'-coordinate of the cluster within the tile
1	the member of a pair, 1 or 2 (paired-end or mate-pair reads only)
Y	Y if the read fails filter (read is bad), N otherwise
18	0 when none of the control bits are on, otherwise it is an even number
ATCACG	index sequence

Fastq Quality

Relationship between Q and p using the Sanger (red) and Solexa (black) equations (described above). The vertical dotted line indicates p = 0.05, or equivalently, $Q \approx 13$.

ASCII TABLE

Phred + 33


Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	0	96	60	×
1	1	[START OF HEADING]	33	21	1	65	41	Α	97	61	а
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	С	99	63	с
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	е
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	(BELL)	39	27	1.00	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	н	104	68	ĥ
9	9	[HORIZONTAL TAB]	41	29)	73	49	1.1	105	69	1
10	A	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	в	[VERTICAL TAB]	43	2B	+	75	4B	ĸ	107	6B	k
12	С	[FORM FEED]	44	2C	,	76	4C	L.	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D		77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r.
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	т	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	v	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	w	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	У
26	1A	[SUBSTITUTE]	58	ЗA		90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	1	123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	١	124	7C	1
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	ЗF	?	95	5F	_	127	7F	[DEL]
			-			-					

Fastq Quality Encoding

\$	SSSSSSSSS	555555		
	XXXXXXXXXX	*****		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	LLLLLLLL			
!"#\$%&'()*+,/0123456789:;	<=>?@ABCD	DEFGHIJKLMNOPORSTUVWXY	Z[\]^ `abcdefghijklmno	parstuvwxyz{ }~
	Ĭ	1		
33 59	64	73	104	126
0	531	40		
- 1	50	9		
		9		
	3.	9		
0.2	5 31	41		
S - Sanger Phred+33,	raw read	ds typically (0, 40)		
X - Solexa Solexa+64,	, raw read	ds typically (-5, 40)		
I - Illumina 1.3+ Phred+64,	raw read	ds typically (0, 40)		
J - Illumina 1.5+ Phred+64,	raw read	ds typically (3, 40)		
with 0=unused, 1=unused,	2=Read S	Segment Quality Contro	l Indicator (bold)	
(Note: See discussion at	ove).			
L - Illumina 1.8+ Phred+33,	raw read	ds typically (0, 41)		

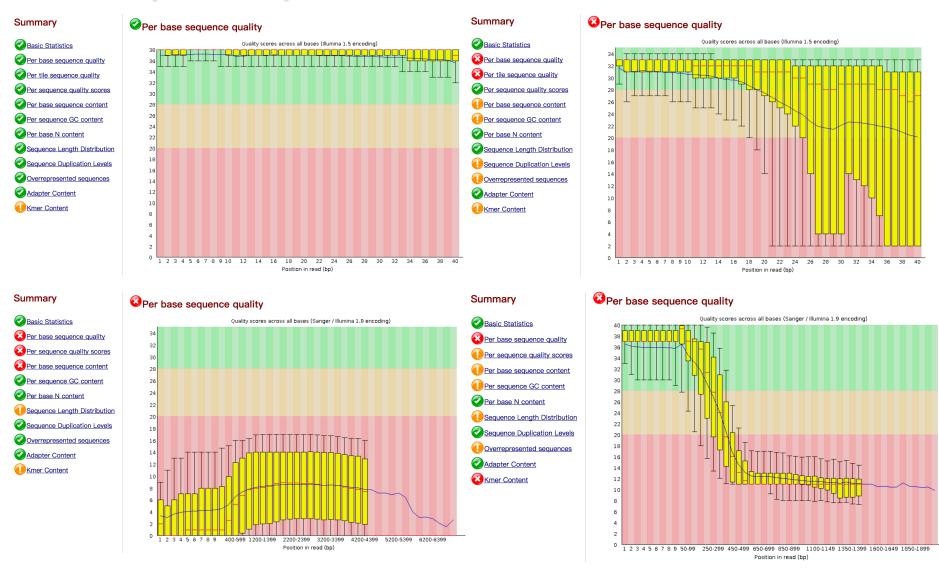
Quality Control Read quality distribution Library insert size

Mapping Rate Duplication assessment

Quality Control Tools

Feature\Tools	NGS QC Toolkit v2.2	FastQC v0.10.0	PRINSEQ- lite v0.17 ¹	TagDust	FASTX- Toolkit v0.0.13	SolexaQA v1.10	TagCleaner v0.12 ¹	CANGS v1.1
Supported NGS platforms	Illumina, 454	FASTQ ²	Illumina, 454	Illumina, 454	Illumina	Illumina	lllumina, 454	454
Parallelization	Yes	Yes	No	No	No	No	No	No
Detection of FASTQ variants	Yes	Yes	Yes	No	No	Yes	No	No
Primer/Adaptor removal	Yes	No ³	No	Yes	Yes	No	Yes ⁴	Yes
Homopolymer trimming (Roche 454 data)	Yes	No	No	No	No	No	No	Yes
Paired-end data integrity	Yes	No	No	No	No	No	No	No
QC of 454 paired-end reads	Yes	No	No	No	No	No	No	No
Sequence duplication filtering	No	No⁵	Yes	No	Yes	No	No	Yes
Low complexity filtering	No	No	Yes	No	Yes	No	No	No
N/X content filtering	No	No ⁶	Yes	No	Yes	No	No	Yes
Compatability with compressed input data file	Yes	Yes	No	No	No	No	No	No
GC content calculation	Yes	Yes	Yes	No	No	No	No	No
File format conversion	Yes	No	No	No	No	No	No	No
Export HQ and/or filtered reads	Yes	No	Yes	Yes	Yes	No	Yes	Yes
Graphical output of QC statistics	Yes	Yes	No ⁷	No	Yes	Yes	No ⁷	No
Dependencies	Perl modules: Parallel::ForkManager, String::Approx, GD::Graph (optional)	-	•		Perl module: GD::Graph	R, matrix2png	-	BLAST, NCBI nr database

FastQC


Babraham Bioinformatics

About | People | Services | Projects | Training | Publications

FastQC

Function	A quality control tool for high throughput sequence data.				
Language	Java				
	A suitable Java Runtime Environment				
Requirements	The Picard BAM/SAM Libraries (included in download)				
Code Maturity	Stable. Mature code, but feedback is appreciated.				
Code Released	Yes, under <u>GPL v3 or later</u> .				
Initial Contact	Simon Andrews				
Download Now					

Example Reports

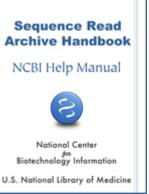
SRA

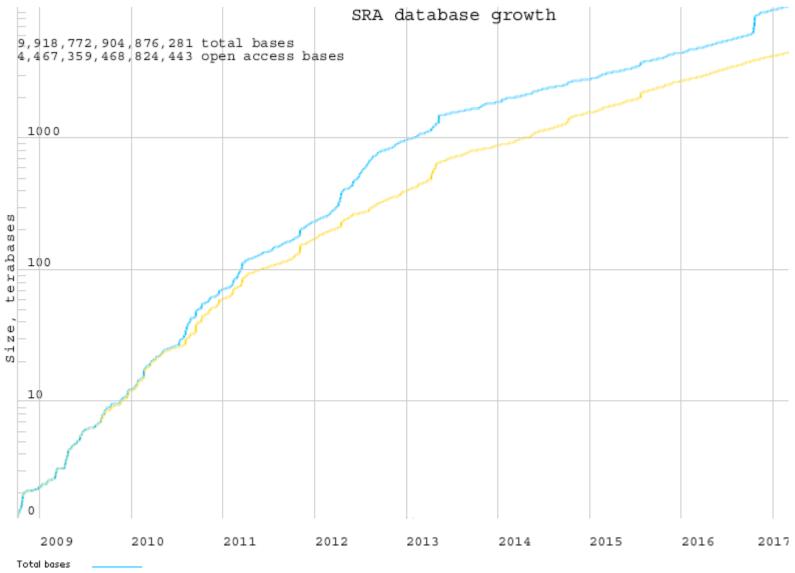
The Sequence Read Archive (SRA) stores raw sequence data from "next-generation" sequencing technologies including Illumina, 454, IonTorrent, Complete Genomics, PacBio and OxfordNanopores. In addition to raw sequence data, SRA now stores alignment information in the form of read placements on a reference sequence.

SRA is NIH's primary archive of high-throughput sequencing data and is part of the international partnership of archives (INSDC) at the NCBI, the European Bioinformatics Institute and the DNA Database of Japan. Data submitted to any of the three organizations are shared among them.

Please check SRA Overview for more information.

Submitting to SRA

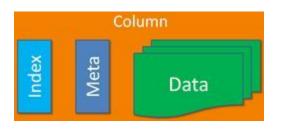

Making data available to the research community enhances reproducibility and allows for new discovery by comparing data sets.

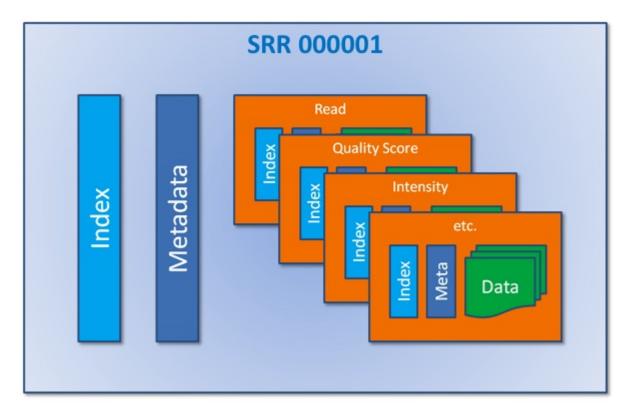

- <u>Submission Quick Start</u>
- Frequently Asked Questions
- Submitter Login

Using SRA Data with SRA Toolkit

Use SRA data to validate experimental results, increase sample sizes, determine variance and open up new avenues of research.

- <u>Documentation</u>
- <u>Usage Guide</u>
- Download
- Get sources code on <u>GitHub</u> (for developers using SRA)





Open access bases

03/1/2017 06:07am

SRA Data Structure

NCBI Sequence Read Archive (fastq)

an NCBI-assigned identifier, and the description holds the original identifier from <u>Solexa/Illumina</u> (as described above) plus the read length. Sequencing was performed in paired-end mode (~500bp insert size), see <u>SRR001666</u>. Notably in the above output the paired-end information was lost when the data was extracted from the NCBI SRA using fastq-dump with default settings.

SRX000430: Illumina sequencing of Escherichia coli str. K-12 substr. MG1655 genomic paired-end library

1 ILLUMINA (Illumina Genome Analyzer) run: 7M spots, 507.4M bases, 5.8Gb downloads

Design: Standard Illumina paired-end library construction protocol. Genomic DNA was randomly fragmented using nebulisation and a 500 bp fraction was obtained by gel electrophoresis.

Submitted by: Illumina Cambridge Ltd. (ILLUMINA)

Study: Model organism for genetics, physiology, biochemistry <u>PRJNA30551 • SRP000220</u> • <u>All experiments</u> • <u>All runs</u> show Abstract

Sample: Generic sample from Escherichia coli str. K-12 substr. MG1655 <u>SAMN00000749</u> • SRS000537 • <u>All experiments</u> • <u>All runs</u> <u>Organism: Escherichia coli str. K-12 substr. MG1655</u>

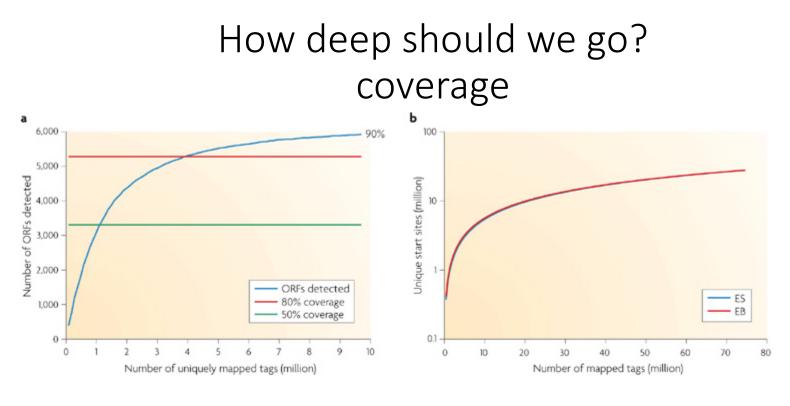
Library:

Name: 500bp-insert library Instrument: Illumina Genome Analyzer Strategy: WGS Source: GENOMIC Selection: RANDOM Layout: PAIRED

Spot descriptor:

Runs: 1 run, 7M spots, 507.4M bases, 5.8Gb

Run	# of Spots	# of Bases	Size	Published
SRR001666	7,047,668	507.4M	5.8Gb	2008-07-14


\$./prefetch SRR001666
\$./fastq-dump SRR001666

NCBI Sequence Read Archive (fastq)

Further to note, with newer fastq-dump the extracted sequences have double-length and it turns out fastq-dump concatenates sequence of the forward and reverse reads together into a non-sense:

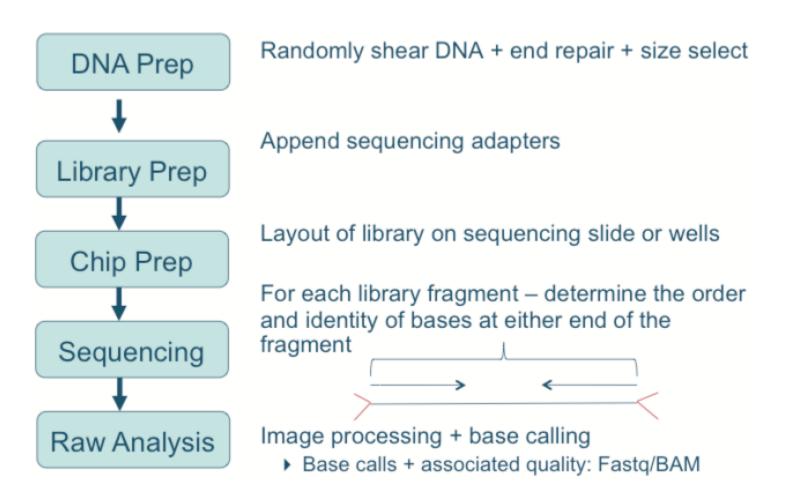
Better approach is to preserve original accessions and split into two or three files (forward, reverse, singletons)

Nature Reviews | Genetics

- **a** | 80% of yeast genes (genome size ~120 Mb) were detected at 4 million uniquely mapped RNA-Seq reads, and coverage reaches a plateau afterwards despite the increasing sequencing depth. Expressed genes are defined as having at least four independent reads from a 50-bp window at the 3' end.
- **b** | The number of unique start sites detected starts to reach a plateau when the depth of sequencing reaches 80 million in two mouse transcriptomes. ES, embryonic stem cells; EB, embryonic body.

Applications on Biomedical Sciences

DNA


- Whole Genome Sequencing
- Exome Sequencing
- De novo Genome Sequencing
- Metagenome Sequencing
- ChIP Sequencing

RNA

- Small RNA Sequencing
- Transcriptome Sequencing
- De novo Transcriptome Sequencing
- Metatranscriptome Sequencing

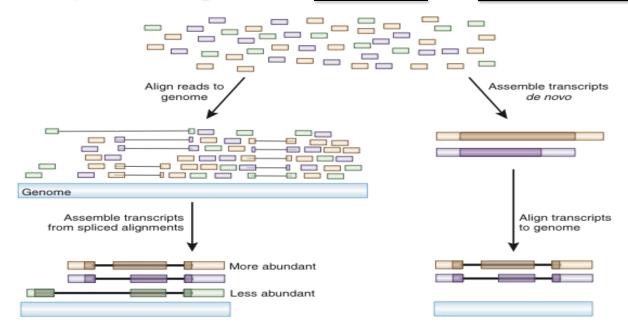
HTseq Experiment

Data Format Types

• Raw Sequence Data e.g. fasta/fastq

>xyz some other comment

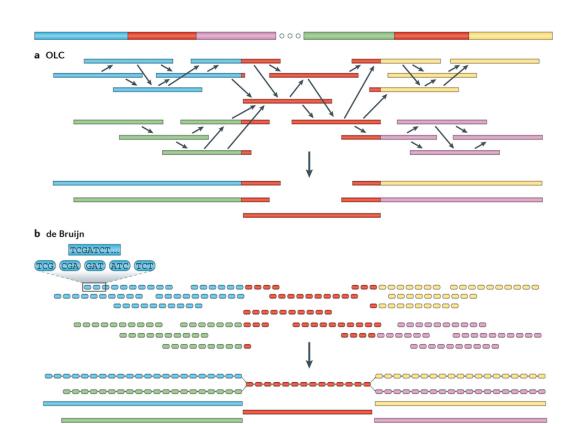
ttcctctttctcgactccatcttcgcggtagctgggaccgccgttcagtcgccaatatgc agctcttgtccgcgcccaggagctacacaccttcgaggtgaccggccaggaaacggtcg cccagatcaaggctcatgtagcctcactggagggcatt

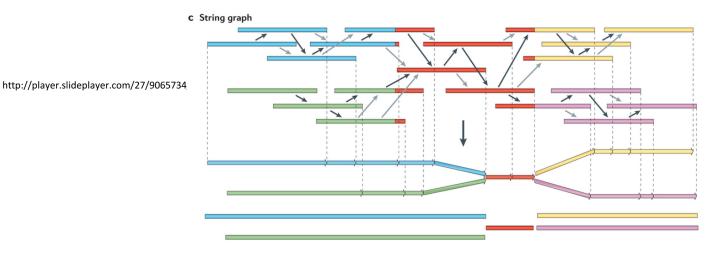

- Aligned data e.g. SAM/BAM
 - SAM (Sequence Alignment/Map) format has become the *de facto* standard for storing alignment data.
 - BAM is a binary version of SAM allowing more efficient storage.
- Processed data e.g. BED

SAM format

ERR00564	46.110880	574	147	1	16109995	54	60
54M	=	16109974	12	-266			
TTTTCTGAACAGGGATGATATTTGTAATTTCATAGAATTAAGAGATATCTGACT							
89=<;@>EECFCBBFFCAEFBGB=FFFC?@AB@G=FFB@CABABA?A@<>>=;=							
XT:A:U	NM:i:0	SM:i:37	AM:i:37	X0:i:1	X1:i:0	XM:i:0	
XO:i:0	XG:i:0	MD:Z:54	RG:Z:ERH	R005646	OQ:Z:D?		
FFEEEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF							
ERR00564	46.551802	24	147	1	16109995	56	60
54M	=	16109984	17	-163			
TTCTGAACAGGGATGATATTTGTAATTTCATAGAATTAAGAGATATCTGACTCT							
68= <a@@a???ab?a>ABBB>@CABCAAA>B@BAB@BA@A@A@A@=A=A=>;<</a@@a???ab?a>							
XT:A:U	NM:i:0	SM:i:37	AM:i:37	X0:i:1	X1:i:0	XM:i:0	
XO:i:0	XG:i:0	MD:Z:54	RG:Z:ERF	R005646			
OQ:Z:ECEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE							

Analysis Strategies:

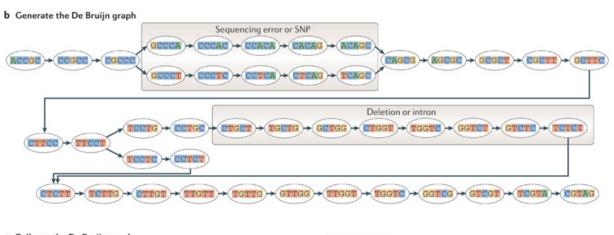

Reference Sequence Alignment (Mapping) vs de novo Assembly

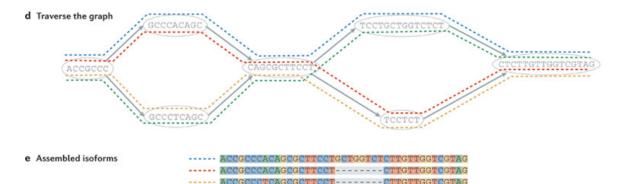


Process	Software & Algorithms	Website	
Preprocessing step homemade script		(N/A)	
	MAQ	http://maq.sourceforge.net	
	BWA	http://bio-bwa.sourceforge.net/bwa.shtml	
	BWA-SW (SE only)	http://bio-bwa.sourceforge.net/bwa.shtml	
(1.1) Allowmont	PERM	http://code.google.com/p/perm/	
(1.1) Alignment	BOWTIE	http://bowtie-bio.sourceforge.net	
	SOAPv2	http://soap.genomics.org.cn	
	MOSAIK	http://bioinformatics.bc.edu/marthlab/Mosaik	
	NOVOALIGN	http://www.novocraft.com/	
	VELVET	http://www.ebi.ac.uk/%7Ezerbino/velvet	
(1.2) De novo Assembly	SOAPdenovo	http://soap.genomics.org.cn	
	ABYSS	http://www.bcgsc.ca/platform/bioinfo/software/abyss	

de novo Assembly

- Genomics assembly:
 - <u>Velvet</u>,
 - SOAPdenovo
- Transcript assembly:
 - Trinity




a Generate all substrings of length k from the reads

ACAGE TECTS STETE CACAS TECT SSTET CCACA CTECE TSSTE	AGCGC CTCTT CGTCG CAGCG CCTCT TGGTC TCAGC TCCTC TTGGT	
CCCAC GCTTC CTGGT TTGTT GCCCA CGCTT GCTGG CTTGT	CTCAG TTCCT GTTGG	– k-mers (k=5)
CCCC CCCT TCCTC TCTTC	CCCTC GCTTC TTGTT CGTAG	
ACCGC CAGCG CCTGC TCTCT	EGCCC GCGCT TCTTG GTCGT	
ACCGCCCACAGCGCTTCCTGCTGGTCTCTTGTTG	CGCCCTCAGCGCTTCCTCTTGTTGGTCGTAG	Reads

K-mers

----- ACCGCCCTCAGCGCTTCCTGCTGGTCTCTTGTTGGTCGTAG

Reference Genome Example:

assembly	Genome	years
GRCh38/hg38	Human	Dec. 2013
GRCh37/hg19	Human	Feb. 2009
NCBI36/hg18	Human	Mar. 2006
NCBI35/hg17	Human	May 2004
NCBI34/hg16	Human	July 2003
GRCm38/mm10	Mouse	Dec. 2011
NCBI37/mm9	Mouse	July 2007
NCBI36/mm8	Mouse	Feb. 2006
NCBI35/mm7	Mouse	Aug. 2005
RGSC 6.0/rn6	Rat	Jul. 2014
RGSC 5.0/rn5	Rat	Mar. 2012
Baylor 3.4/rn4	Rat	Nov. 2004
BDGP R6+ISO1 MT/dm6	D. melanogaster	Aug. 2014
BDGP R5/dm3	D. melanogaster	Apr. 2006

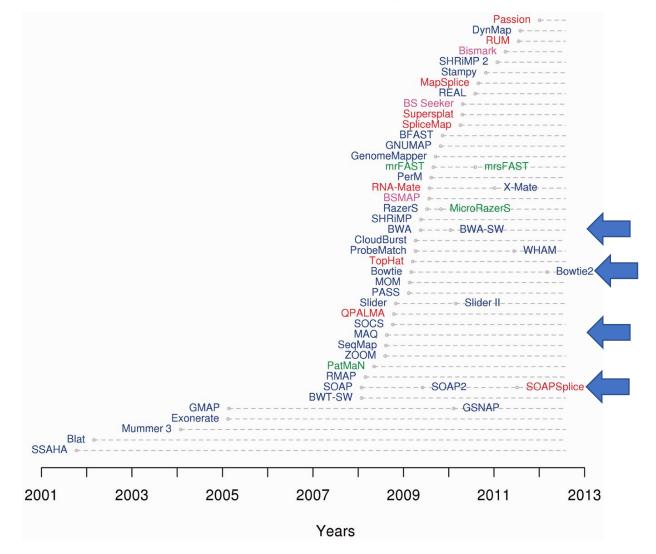
GFF/GTF File Format

Fields

Fields must be tab-separated. Also, all but the final field in each feature line must contain a value; "empty" columns should be denoted with a '.'

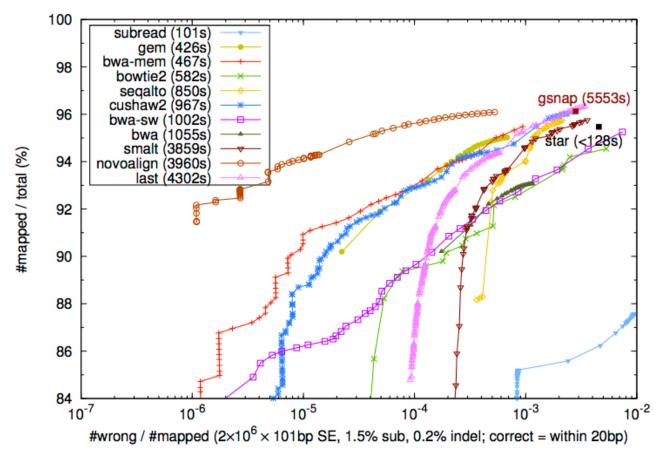
- 1. seqname name of the chromosome or scaffold; chromosome names can be given with or without the 'chr' prefix. Important note: the seqname must be one used within Ensembl, such as species or assembly. See the example GFF output below.
- 2. source name of the program that generated this feature, or the data source (database or project name)
- 3. feature feature type name, e.g. Gene, Variation, Similarity
- 4. start Start position of the feature, with sequence numbering starting at 1.
- 5. end End position of the feature, with sequence numbering starting at 1.
- 6. score A floating point value.
- 7. strand defined as + (forward) or (reverse).
- 8. frame One of '0', '1' or '2'. '0' indicates that the first base of the feature is the first base of a codon, '1' that the second base is the first base of a codon, and so on...
- 9. attribute A semicolon-separated list of tag-value pairs, providing additional information about each feature.

Note that where the attributes contain identifiers that link the features together into a larger structure, these will be used by Ensembl to display the features as joined blocks.


Х	Ensembl	Repeat	2419108	2419128	42			hid=trf; hstart=1; hend=21
Х	Ensembl	Repeat	2419108	2419410	2502	-		hid=AluSx; hstart=1; hend=303
Х	Ensembl	Repeat	2419108	2419128	0			hid=dust; hstart=2419108; hend=2419128
Х	Ensembl	mbl Pred.trans.		2416676	2418760	450.19	-	2 genscan=GENSCAN0000019335
Х	Ensembl Variation		2413425	2413425		+		
Х	Ensembl Variation		2413805	2413805		+		

UCSC Table Browser

	Genomes	Genome Browser	Tools N	/lirrors [Downloads	My Data	Help	About Us
Table B	rowser							
form, the examine data. All clade: (User's Guide the biological tables can be Mammal	trieve the data association of your set downloaded in their genome: Human	through anno entirety from	ple queries, otation enric the <u>Seque</u> assemb	and the Ope hments, sen nce and Annu ly: Dec. 2013	nHelix Table d the data to otation Down (GRCh38/hg38)	Browser <u>GREAT</u> . <u>loads</u> pag	<u>tutorial</u> for a nar Send data to <u>Ge</u>
group:	Genes and Gene				add cus	tom tracks trac	ck hubs	
	RefSeq All (ncbiRe							
region:	• genome) position chr9:133252	2000-13328086	1 lookup d	efine regions			
identifie	ers (names/ac	cessions): paste list	upload list					
filter:	create							
subtrac	k merge: crea	ate						
intersed	ction: create							
correlat	ion: create							
output	format: GTF -	gene transfer format		Send out	put to 💿 <u>Ga</u>	laxy 🗆 <u>GRI</u>		<u>GenomeSpace</u>
output	file:	(le	ave blank to	keep outpu	t in browser)			
file type	e returned: 🔿	plain text o gzip o	compressed					
get output								
To reset	all user cart se	ettings (including cu	stom tracks),	click here.				


Reference Sequence Alignment (Mapping)

DNA mappers are plotted in blue, RNA mappers in red, miRNA mappers in green and bisulphite mappers in purple.

Comparison of Mapping tools (ROC curve)

- ChIP, RNA-seq \rightarrow bowtie2 \rightarrow cufflinks
- SNP, Indels, methylation \rightarrow BWA \rightarrow GATK

Aggregate bioinformatics results across many samples into a single report.

Read QC & pre-processing	Aligners / quantifiers	Post-alignment processing	Post-alignment QC	
Cutadapt	Bismark	Bamtools	methylQA	
FastQC	Bowtie	Bcftools	Peddy	
FastQ Screen	Bowtie 2	GATK	Preseq	
Skewer	HICUP	HTSeq	Qualimap	
Trimmomatic	Kallisto	Picard	QUAST	
	Salmon	Prokka	RSeQC	
	Slamdunk	Samblaster	BUSCO	
	STAR	Samtools	goleft	
	Tophat	SnpEff		
		Subread featureCounts		

MultiQC: Summarize analysis results for multiple tools and samples in a single report Philip Ewels, Måns Magnusson, Sverker Lundin and Max Käller Bioinformatics (2016) doi: 10.1093/bioinformatics/btw354 PMID: 27312411

RNA-Seq

- This report was generated using logs from an analysis accidentally run on ChIP-Seq data from the BI Human Reference Epigenome Mapping Project: ChIP-Seq in human subject dataset (SRP001534).
- Initial QC was done using <u>FastQC</u>, followed by trimming with <u>TrimGalore!</u> (a wrapper around <u>cutadapt</u>). Reads were aligned using <u>STAR</u> and overlaps counted with <u>featureCounts</u>.

Whole-Genome Sequencing

 The data from this report comes from an analysis of HapMap trio samples, run by the <u>National</u> <u>Genomics Infrastructre</u>(NGI) at SciLifeLab, Sweden. Initial quality control was done using <u>FastQC</u> and <u>FastQ Screen</u>. Reads were processed with <u>GATK</u> and the aligned reads analysed using <u>Picard</u>. Downstream QC was done using <u>Qualimap BamQC</u> and<u>SnpEff</u>.

SRA & FastQC Exercise

SRX2599962: Other Sequencing of E. coli

1 ILLUMINA (Illumina MiSeq) run: 1.4M spots, 644.2M bases, 374Mb downloads

External Id: PNUSAE005405:wgs

Submitted by: Centers for Disease Control and Prevention Enteric Diseases Laboratory Branch (edlb-cdc)

Study: PulseNet Escherichia coli and Shigella genome sequencing
PRJNA218110 • SRP046387 • All experiments • All runs
hide Abstract
PulseNet STEC genome reference library

Sample:

<u>SAMN06456783</u> • SRS2006447 • <u>All experiments</u> • <u>All runs</u> Organism: <u>Escherichia coli</u>

Library:

Name: NexteraXT Instrument: Illumina MiSeq Strategy: WGS Source: GENOMIC Selection: RANDOM Layout: PAIRED Construction protocol: NexteraXT

Runs: 1 run, 1.4M spots, 644.2M bases, 374Mb

Run	# of Spots	# of Bases	Size	Published
SRR5297773	1,358,043	644.2M	374Mb	2017-02-28

ID: 3762726

III) Sequence Read Archive											
/lain Browse Sea	rch Dowr	nload Subm	it Documer	ntation So	oftware	Tra	ace Archiv	e Trace Assem	bly Trace BLAST		
Studies Samples /	Analyses	Run Browse	r Run Sele	ector Pro	visiona	I SRA					
(SRR5297773)											
Metadata Reads Download											
Run Spots Bases Size GC content Published Access Type											
SRR5297773	1.4M	644.2Mbp	392.2M	51.2%		2017	-02-28	public			
This run has 2 r	eads per	spot:									
	L=237, σ=:	35.0, 100%				T=2	.37, σ=35.	0, 100%			
Q Legend											
Experiment	Library	r									
SRX2599962	Name	Plat	orm Stra	ource	urce Selection		n Layout				
to BLAST	Nexte	raXT Illum	ina WG	S G	ENON	/IC	RANDO	M PAIRED			
Biosample		Ş	ample De	mple Description			m	Links			
SAMN064567	<u>83</u> (SRS2	2006447)		Escherichia coli			<u>hia coli</u>	PRJNA218110 [Enterobacteriad			
Bioproject SRA Study Title											
PRJNA218110 SRP046387 PulseNet Escherichia coli and Shigella genome sequencing											
Abstract: PulseNet STEC genome reference library											

(SRR5297773)

Metadata Reads

Filter:

ads Download

Find Filtered Download @ What does it do?

What can the filter be applied to?

- < 1 1 135805 >
- 1. <u>SRR5297773.1</u> <u>SRS2006447</u> name: 1, member: 7
- 2. SRR5297773.2 SRS2006447 name: 2, member: 7
- 3. SRR5297773.3 SRS2006447 name: 3, member: 7
- 4. SRR5297773.4 SRS2006447 name: 4, member: 7
- 5. SRR5297773.5 SRS2006447 name: 5, member: 7
- 6. SRR5297773.6 SRS2006447 name: 6, member: 7
- 7. SRR5297773.7 SRS2006447 name: 7, member: 7
- 8. SRR5297773.8 SRS2006447 name: 8, member: 7
- 9. SRR5297773.9 SRS2006447 name: 9, member: 7

10. SRR5297773.10 SRS2006447 name: 10, member: 7 View: Imes biological reads □ technical reads

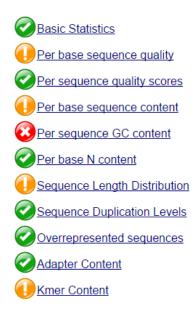
Reads (separated)

>gnl|SRA|SRR5297773.1.1 1 (Biological)

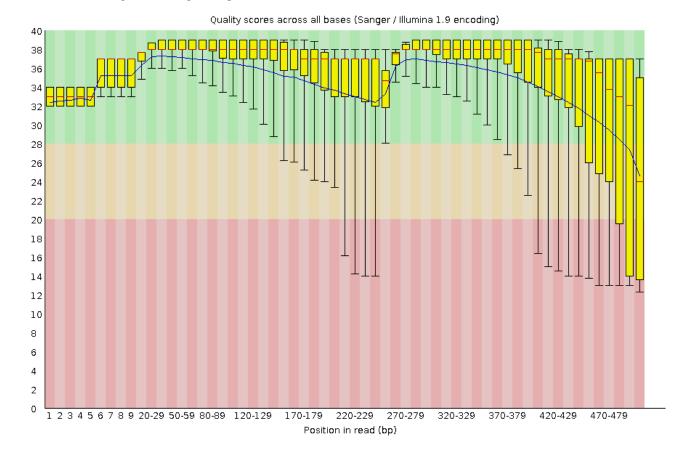
TGGCTACGTTGATCAAGCGACAGCTTGTCGAAGCTTTCCACATCGGTGGTCAACATACCT TTCAGGCGGCTGAGCGCGTTAATGGTATTCGACGGATGGCAGTGGAACTCCGCAGGTTGG GTTGCGCCAGCTTCCGGAGCCGGTACTAACTGATCAGCACCAGTAGCTTGTTTCAGCAGC GCAGGATGCTGCTCAAAGTAAGCTTCGACGTTGTTGATGGCATCACGGGTACGGGTGATT TCGTAGCCAGT

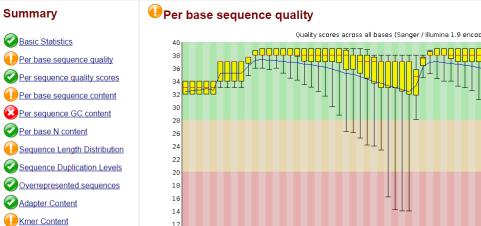
>gnl|SRA|SRR5297773.1.2 1 (Biological)

\$ prefecth SRR5297773


- \$ fastq-dump SRR5297773
- \$ fastq-dump --split-files SRR5297773

- Install
 - "Putty" http://www.putty.org/
 - "filezilla" <u>https://filezilla-project.org/</u>

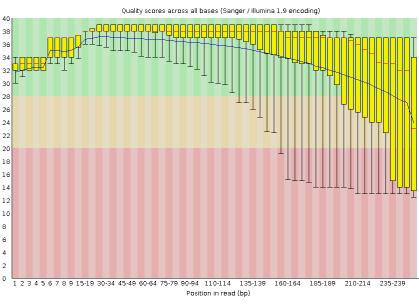

IP:120.126.1.41


ID: std01 ~std12

Summary

Per base sequence quality

Quality scores across all bases (Sanger / Illumina 1.9 encoding) 12 10 8 6 4 2


0 1 2 3 4 5 6 7 8 9 20-29 50-59 80-89 120-129 170-179 220-229 270-279 320-329 370-379 420-429 470-479 Position in read (bp)

Summary

Basic Statistics Per base sequence quality \checkmark Per sequence quality scores Per base sequence content Per sequence GC content Per base N content Sequence Length Distribution Sequence Duplication Levels Overrepresented sequences Adapter Content Kmer Content

Per base sequence quality

8 6

<u>MultiQC</u>

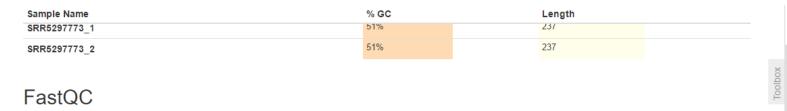
v0.8

General Stats

FastQC

Sequence Quality Histograms Per Sequence Quality Scores

Per Base Sequence Content


Per Sequence GC Content

Per Base N Content

Sequence Length Distribution

Sequence Duplication Levels

Adapter Content

*

A

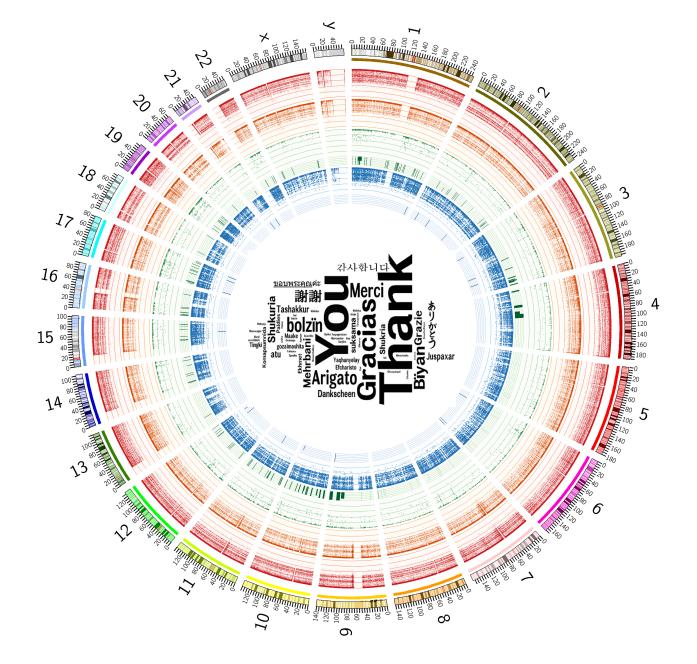
 \diamondsuit

Ŧ

H

0

Y-Limits: on


FastQC

FastQC is a quality control tool for high throughput sequence data, written by Simon Andrews at the Babraham Institute in Cambridge.

Sequence Quality Histograms	1	

The mean quality value across each base position in the read. See the FastQC help.

