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Figure 1: An overview of the flow of information from DNA to protein in a eukaryote

First, both coding and noncoding regions of DNA are transcribed into mRNA. Some regions are
removed (introns) during initial mMRNA processing. The remaining exons are then spliced together,
and the spliced mRNA molecule (red) is prepared for export out of the nucleus through addition of
an endcap (sphere) and a polyA tail. Once in the cytoplasm, the mRNA can be used to construct a
protein.
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(vs. onA) Why RNA 7

* Differentially expressed — Functional studies
* Different cell types (muscle cells, fibroblasts)
 Environmental conditions (heat shock, nutrient deprivation)
* Developmental phases (embryonic day 12)

* Cell-cycle stages (s phase) ®
* Disease states (tumor cells, virus-infected cells) é | o
- ® ®
* Transcription level — Molecular features ﬁ
* Alternative isoforms @ ® ® @®
e Fusion transcripts T
* RNA editing 0009090

* Prioritizing protein coding somatic mutations (often
heterozygous)



Evolution of transcriptomics technologies
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Overview of analysis workflow for microarray
and RNA-seq transcriptional profiling

Microarray RNA-Seq
Hybridization. .
Scanning images. Sequencing.
Quantification. Base call.
I Raw intensities I I Short reads I
Preprocessing: Al;gened to
Background correction, 'f; o::?'(;i 19(-3"€>m& e, o
Normalization, > snow isoform & exon-
Summarization. junction sequences.
\ 4
Expression levels of Expression levels of Novel
Transcripts (continuous) Transcripts (counts) transcrlpts

| Statistical analysis )—’1 1‘—' Statistical analysis |

Differentially
expressed
transcripts

Cellular
functional/pathway

analysis | \ ‘ I

Fang Z et.al. Cell Biosci. 2012;2:26




RNA-seq vs. Microarray yield correlated results
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Zhing LS et. Al. Front. Plant Sci. 5:802.



Technology specifications

Principle

Resolution

Throughput

Reliance on genomic sequence

Background noise
Practical issues

Required amount of RNA

Cost for mapping transcriptomes

of large genomes
Application

Dynamic range to quantify gene

expression level

Simultaneously map transcribed
regions and gene expression

Ability to distinguish different
isoforms

Ability to distinguish allelic
expression

Hybridization

From several to 100 bp
High

Yes

High

High
High

Up to a few hundred-
fold

Yes

Limited

Limited

Sanger sequencing

Single base
Low
No

Low

High
High

Not practical
Limited for gene
expression

Yes

Yes

Microarray -> High Throughput Sequencing (HTS)

High-throughput
sequencing
Single base

High
In some cases

Low

Low

Relatively low

> 8000-fold
Yes
Yes

Yes

Wang et al. Nature Rev Genet, 10:57, 2009



RNA sequencing

Samples of interest Isolate RNAs Generate cDNA, Fragment,
size select, add linkers
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Important concepts

* Sequencing depth (X)
* Gene length
* Gene counts

Sequencing

Gene counts




Challenges

Sample
e Purity?, quantity?, quality?
RNAs consist of small exons that may be separated by large

introns
* Mapping reads to genome is challenging

The relative abundance of RNAs vary wildly
e 10°— 10’ orders of magnitude

* Since RNA sequencing works by random sampling, a small fraction
of highly expressed genes may consume the majority of reads

* Ribosomal and mitochondrial genes

RNAs come in a wide range of sizes
* Small RNAs must be captured separately
* PolyA selection of large RNAs may result in 3" end bias

RNA is fragile compared to DNA (easily degraded)



Agilent example / interpretation

* https://github.com/griffithlab/rnaseq tutorial/wiki/Resources/Agilent Trace Examples.pdf

e ‘RIN’ = RNA integrity number
* 0 (bad)to 10 (good)
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RNA-seq library construction

strategies

* Total RNA versus polyA+ RNA?
Ribo-reduction?

Size selection (before and/or after cDNA synthesis)
* Small RNAs (microRNAs) vs. large RNAs?
* A narrow fragment size distribution vs. a broad one?

Linear amplification?

Stranded vs. un-stranded libraries
Exome captured vs. un-captured
Library normalization?

These details can affect analysis strategy
* Especially comparisons between libraries



Fragmentation and size selection

Tissue

l

Assess RNA quality ¢=== Isolate total RNA
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Tissue

RNA-seq Strategy

RNA sequence
selection/depletion

A Total RNA

\

Isolate RNA,
DNAse
S
___\_/‘\/‘\

Initial RNA pool

A R \

Total rRNA PolyA cDNA

Seledwn/depletmn RNA reduction  selection capture

1 Broad transcrlpt representation®
. i Abundant RNAs dominate

! ngh unprocessed RNA
i High genomic DNA

. Broad transcript representation
| Abundant RNAs de-emphasized
| High unprocessed RNA

ngh genomic DNA

Expected Alignments

Legend

genomic DNA
immature RNA
~—==.. mature RNA
non-coding RNA
o7 ribosomal RNA
=3 paired end reads

NN\

D.cDNA capture

Limited transcript representation (targeted) | i

Abundant RNAs de- emphaS|zed.
Low unprocessed RNA.
Low genomic DNA!

Limited transcript representation (ponA)

Abundant RNAs de-emphasized |
Low unprocessed RNA
Low genomic DNA



Stranded vs. un-Stranded

A. Depiction of cDNA fragments from an unstranded library

Legend

L Transcription start site and direction

¢ PolyA site (transcription end)

=-= Read sequenced from positive strand (forward)
=—= Read sequenced from negative strand (reverse)

C.Viewing strand of aligned reads in IGV
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Replicates

* Technical Replicate

* Multiple instances of sequence
generation

* Flow Cells, Lanes, Indexes

* Biological Replicate

* Multiple isolations of cells showing
the same phenotype, stage or other
experimental condition

* Some example concerns/challenges:

* Environmental Factors,
* Growth Conditions,
* Time
* Correlation Coefficient 0.92-0.98

ession (log2[expressions 1))

Library B (BS_U_1a) expr

Library A (BS_U_1b) expression (log2{expressions1])



Common analysis goals of RNA-Seq

* Gene expression and differential expression
 Alternative expression analysis
* Transcript discovery and annotation

* Allele specific expression
* Relating to SNPs or mutations

* Mutation discovery
* Fusion detection
* RNA editing



General themes of RNA-seq workflows

* Each type of RNA-seq analysis has distinct requirements and
challenges but also a common theme:

1.0btain raw data (convert format)
2.Align/assemble reads

3.Process alignment with a tool specific to the goal

e e.g. ‘cufflinks’ for expression analysis, ‘defuse’ for fusion detection,
etc.

4.Post process

 Import into downstream software (R, Matlab, Cytoscape, Ingenuity,
etc.)

5.Summarize and visualize
 Create gene lists, prioritize candidates for validation, etc.



How much library depth is needed for
RNA-seq?

* Depends on a number of factors:

* Question being asked of the data. Gene expression? Alternative
expression? Mutation calling?

* Tissue type, RNA preparation, quality of input RNA, library
construction method, etc.

e Sequencing type: read length, paired vs. unpaired, etc.
 Computational approach and resources

* |dentify publications with similar goals
* Pilot experiment

* Good news: 1-2 lanes of recent lllumina HiSeq data should be
enough for most purposes



What mapping strategy should | use for
RNA-seq?

* Depends on read length
e <50 bp reads

* Use aligner like BWA and a genome + junction database

 Junction database needs to be tailored to read length

* Oryou can use a standard junction database for all read lengths and an
aligner that allows substring alignments for the junctions only (e.g.
BLAST ... slow).

* Assembly strategy may also work (e.g. Trans-ABySS)

* > 50 bp reads
* Spliced aligner such as Bowtie/TopHat, STAR, HISAT, etc.

Informatics for RNA-seq: A web resource for analysis on the cloud. 11(8):e1004393. 2015.




Reference Sequence Alignment (Mapping)
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Well begun is
half done.

-Aristotle -

Experiment design

* A clearly defined biological question
* Well control of potential sources of variation
* HTS experimental replicates

 Compliance with the standard of mierearray (HTS
based) information collection (MINSEQE)

»http://fged.org/projects/minseqge/




RNA seq analysis

Reads are mapped to the reference
genome or transcriptome

Mapped reads are assembled into
expression summaries (tables of
counts, showing how may reads
are in coding region, exon, gene or
junction)

Data is normalized

Statistical testing of differential
expression (DE) is performed,
producing a list of genes with p-
values and fold changes.

Similar downstream analysis than
microarray results (Functional
Annotations, Gene Enrichment
Analysis; Integration with other
data...)

workflow

Normalization

-

DE testing ¢

Systems Biology

I



Normalization/scaling/transformation: different goals

R/FPKM: (Mortazavi et al. 2008)

- Correct for: differences in sequencing depth and transcript length

- Aiming to: compare a gene across samples and diff genes within

samp le number of reads in region
B region length x10°
RPKM = total reads x 10°

TMM: (Robinson and Oshlack 2010)

- Correct for: differences in transcript pool composition; extreme
outliers

- Aiming to: provide better across-sample comparability

TPM: (Li et al 2010, Wagner et al 2012)

- Correct for: transcript length distribution in RNA pool
- Aiming to: provide better across-sample comparability

Limma voom (logCPM): (Lawet al 2013)

- Aiming to: stabilize variance; remove dependence of variance on
the mean

Optimal Scaling of Digital Transcriptomes

Gustavo Glusman [E], Juan Caballero, Max Robinson, Burak Kutlu, Leroy Hood

Published: Nov 06,2013 « DOI: 10.1371/journal.pone.0077885



~

erential expression analysis

Tutorial_Part2_cummeRbund_output pdf

TABLE 8.1  List of (some) Software Tools for Differential Expression Analysis genes
Software Type of
Tool Software Analysis Approach Comment
DESeq R/Bioconductor ~ Count-based (negative Considered conservative
package binomial) (low false-positive rate)
edgeR R/Bioconductor ~ Count-based (negative Similar to DESeq in
package binomial) philosophy
tweeDESeq  R/Bioconductor ~ Count-based (Tweedie More general than g
package distribution family) DESeq/edgeR, but new
and not widely tested
Limma R/Bioconductor  Linear models on Originally developed for
package continuous data microarray analysis, very
thoroughly tested. Need
to preprocess counts to
continuous values
SAMSeq R package Nonparametric test Adapted from the SAM
(samr) microarray DE analysis fomer
approach. Works better
with more replicates
NOISeq R/Bioconductor ~ Nonparametric test o Pk P2 SummeRiund pepstpi
package
CuffDiff Linux command  Isoform Can give differentially
line tool deconvolution + expressed isoforms as
count-based tests well as genes (also
differential usage of TSS,
splice sites) o010 PRI + 1
BitSeq Linux command  Isoform deconvolutionin  Can give differentially ;
line tool and R a Bayesian framework expressed isoforms. Also :
package calculates (gene and o
isoform) expression
estimates
ebSeq R/BioConductor  Isoform deconvolution Can give differentially
package in a Bayesian expressed isoforms. Can

framework

be used in a pipeline
preceded by RSEM
expression estimation




Bioinformatics task 1

Expression
analysis

Experiment

design




DESeq analysis as exercise

* Differentially expressed genes

* Complex design (more than one varying factor)

* Simple comparison of groups (less than 5 biological
replicates per group)
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ere has to be another transcript.
In the alternative srlkimj events, | see L
transcripts|
Where is the FOURTH ONE?

z B

www.biocomicals.com

How to spot biological functions
embedded in a gene list?



Bioinformatics task 2

Expression
analysis

Experiment

design




Expression Analysis using RNA-Seq

e 10 individuals out of the 726 present in the original dataset
[Lin et al., 2016],and have reduced each sample to 250,000
reads mapping to chromosome 2R.

* The reads from 10 Drosophila samples.

* An Excel spreadsheet that contains the metadata associated with
each individual.

SRR_ID is an SRA identifier unique for each individual.
DGRP_Number describes the strain of the fly.
Sex stated as M for males and F for females.

Environment stated as 2 and 3 for different calendar times for
collecting the flies.

RNA_Prep_Method using QIAGEN RNeasy kit in all cases but
following either the

centrifuge or the vacuum based protocol.
Lane of the sequencer on which the sample was loaded.
A workflow to rapidly and efficiently proce.

Comparison of normalization and differential expression analyses using rna-seq data from 726 individual drosophila melanogaster. BMC
genomics,17(1):1.
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