High-throughput Sequencing Analysis

Meta-Analysis

Pei-Chien Tsai

2019-05-31

Meta-analysis

- Meta-analysis is a quantitative and epidemiological study design to conduct a systematic reviews of previous research studies.
- The outcome of meta-analysis represents the 'pooled' results of the studies and therefore could provide a more precise estimate of the effect of risk (or treatment) for disease.

- · Compare to a single study, meta-analysis
 - o has greater study power (bigger sample size, greater diversity)
 - o provides more reliable results
 - helps to find out the effects from studies that have conflicting results
 - o helps to discover the effects across different populations
 - can pool the results from studies with smaller sample size that are not statistically significant

Meta-analysis

- The limitations of meta-analysis including
 - Time consuming and difficult to find appropriate studies
 - Details provided by each study might not be adequate for analysis
 - Requires advanced statistical analysis
 - There might be a publication bias only publications with positive/significant findings were reported
- To perform the meta-analysis, the first step is to perform a systematic review.
- Usually we aim to find as many publications as possible, and prefer studies with bigger sample size.
- Ideally, the selected studies shall be
 - Studies with large diversity
 - Study results were generated using similar statistical methods (and adjust for similar covariates)
 - o Studies with same "effects".
 - Studies with both positive/negative, significant/insignificant results
 - Studies with comparable information
 - For genetic studies, sometimes we need to consider the 'molecular meanings' before analysis
- The "effects" can be used for meta-analysis including:
 - Mean, mean difference
 - \circ Risk ratio, odds ratio
 - Proportion, rate change
 - o Coefficients (beta coefficients, correlation coefficients)

Searching the literature with Pubmed

• What do you usually do for literature reviewing? Pubmed?

With filter (year range)

🗕 🕘 🗧 🔀 Floaters	- PubMed - NCBI × +			
\leftrightarrow \rightarrow \mathbf{C} \square http://www.eta	ps://www.ncbi.nlm.nih.gov/pubmed	*	👽 🗵 🧿	佩倩
S NCBI Resources	∂ How To 🖂		<u>Sign in to NC</u>	<u>) BI</u>
Public dec.gov US National Library of Medicine National Institutes of Health	PubMed Create RSS Create alert Advanced	Search	I	Help
Article types Clinical Trial Review	Format: Summary - Sort by: Best Match - Per page: 20 - Send to - Image: Sort by: Best Match - Per page: 20 - Send to - Image: Sort by: Best Match - Per page: 20 - Send to - Image: Sort by: Best Match - Per page: 20 - Send to - Image: Sort by: Best Match - Per page: 20 - Send to - Image: Sort by: Best Match - Se	Filters: <u>Manage Filters</u> Sort by:		
Customize Text availability Abstract Eree full text	Search results Items: 1 to 20 of 281 << First < Prev	Best match	Most recent	
Full text Publication dates	Image: clear Filters activated: Publication date from 2015/01/01 to 2019/12/31. Clear all to show 692 items. Clear Filters activated: Publication date from 2015/01/01 to 2019/12/31. Clear all to show 692 items.	Results by year		
5 years 10 years ✓ From 2015/01/01 to 2019/12/31	 Sharma P, Sridhar J, Mehta S. Prim Care. 2015 Sep;42(3):425-35. doi: 10.1016/j.pop.2015.05.011. Review. PMID: 26319347 	4	Download	CSV
Year filter • C • F	Can we do text mining easily using Pubmed?	A B ned - Floaters count 2019 33 2018 71 2017 55 2016 50 2015 41		

Searching the literature with R

Alternatively, we can use a package "RISmed" to make things easier

```
# Install and use the package
> install.packages("RISmed")
> library(RISmed)
# Let's see how it works
> fit <- EUtilsSummary("Floaters", type="esearch", db="pubmed",</pre>
datetype='pdat', mindate=2015, maxdate=2019)
# "Floaters": this is the keyword you are interested in. Try to
replace it with other character
# db: database, we search publications on pubmed
# mindate: publication year (min)
# maxdate: publication year (max)
# Check how many references you found
> fetch <- EUtilsGet(fit)</pre>
> QueryCount(fit)
[1] 250
# Check how it distributed during 2015 and 2019
> y <- YearPubmed(fetch)</pre>
> table(y)
                                            Number of Publication
2014 2015 2016 2017 2018 2019
                                                - 40
                                                20
   7
       42
             54
                  53
                        59
                             34
                                                0
                                                    2014 2015 2016 2017 2018 2019
# The results are 'slightly' different
                                                              Year
  from what we've got using Pubmed...
```

> barplot(table(y),ylab="Number of Publication",xlab="Year")

Searching the literature with R

We can get all kind of information from these publications > alllist <- EUtilsGet(fit)</pre> > slotNames(alllist) [1] "Query" "PMID" "YearReceived" [4] "MonthReceived" "HourReceived" "DayReceived" [58] "CollectiveName" "Mesh" # Alternatively, just select the information you are interested in > data <- data.frame(pmid=PMID(fetch),year=YearPubmed(fetch),</pre> title=ArticleTitle(fetch), journal=Title(fetch), country=Country(fetch)) # Check the dimension now, we got 5 columns listing the pmid, year, title, journal, and country information > dim(data)

[1] 249 5

You can get some interesting information from the fetch results # For example, check which journal potentially wants to take a related articles in the future

- > journal1 <- table(data\$journal)</pre>
- > barplot(journal1[journal1>7],horiz=F,las=1.5,cex.names=0.4)

Or check who are interested in this topic

> sort(table(data\$country),decreasing=T)

Switzerlar	England	United States
	70	112

Searching the literature with R

```
# And next, let's check if there is a popular word (or words) in the
publication title
# Let's check with the first publication, which list on the first row of your
data
> a<- data$title[1]</pre>
> a
[1] "Ocular and orbital side effects of ALK inhibitors: a review article"
# We can remove all the punctuations at the beginning
> a <- gsub("[:]","",a)</pre>
> a <- gsub("[;]","",a)</pre>
> a <- gsub("[.]","",a)</pre>
# Now, split the string into single characters
> a1 <- strsplit(as.character(a)," ")</pre>
> a1
[[1]]
 [1] "Ocular"
                    "and"
                                  "orbital"
                                                 "side"
                                                               "effects"
 [6] "of"
                                  "inhibitors" "a"
                                                                "review"
                    "ALK"
[11] "article"
# Let's try to do it altogether
> a <- data$title</pre>
> a <- gsub("[:]","",a)</pre>
> a <- gsub("[;]","",a)</pre>
> a <- gsub("[.]","",a)</pre>
> a1 <- strsplit(as.character(a)," ")</pre>
# a1 is a "list"
# You need to "unlist" it before counting it
> a2 <- unlist(a1)</pre>
> sort(table(a2),decreasing=T)[1:20]
a2
        of
                                                                     for
                                                                                with
                    and
                                 in
                                            the
                                                           а
       159
                     96
                                 92
                                             59
                                                          55
                                                                      49
                                                                                  40
                          floaters
          А
              Floaters
                                       Vitreous
                                                   vitreous
                                                                      to
                                                                                  an
         36
                                 27
                                              27
                                                          24
                                                                                  22
                     28
                                                                      23
   Retinal Vitrectomy
                              after
                                           case
                                                    retinal
                                                                      as
        20
                     14
                                 13
                                             13
                                                          13
                                                                      12
```

Example of Meta-analysis: OR

After fetching the publications of interests, you can select the publications for the meta-analysis # Let's use an simple example here, please download R package "meta" > install.packages("meta") > library(meta) # We will use a dataset 'Fleiss93' in meta package # The use of aspirin in preventing death after myocardial infarction > data(Fleiss93) > Fleiss93 study year event.e n.e event.c n.c MRC-1 1974 1 49 615 67 624 2 CDP 1976 44 758 64 771 Placebo Aspirin 3 MRC-2 1979 102 832 126 850 Death # 49 67 4 GASP 1979 32 317 38 309 Alive # 566 557 **PARIS 1980** 5 85 810 52 406 AMIS 1980 246 2267 219 2257 6 7 ISIS-2 1988 1570 8587 1720 8600

Study: study label
year: year of publication
event.e: number of deaths in aspirin group
n.e: number of observations in aspirin group
event.c: number of deaths in placebo group
n.c: number of observations in placebo group

Basically we will compare the odds ratio for each study

	Aspirin	Placebo
Death number		
Alive number		
Total number		

Example of Meta-analysis: outcome

```
# metabin function helps you to calculate odds ratio first
```

```
> result <- metabin(event.e, n.e,event.c,n.c,data=Fleiss93,sm="OR")</pre>
```

> result

1

•	OR		95%-CI	%W(fixed)	%W(random)	Weight of individual
	1 0.7197	[0.4890;	1.0593]	3.2	8.2	studies
	2 0.6808	[0.4574;	1.0132]	3.1	7.8	
	3 0.8029	[0.6065;	1.0629]	5.7	13.2	• Fixed effect
	4 0.8007	[0.4863;	1.3186]	1.8	5.4	• Same mean, zero bt
	5 0.7981	[0.5526;	1.1529]	3.2	8.9	• Random effect
	6 1.1327	[0.9347;	1.3728]	10.2	20.7	• Different mean,
	7 0.8950	[0.8294;	0.9657]	72.9	35.8	with bt study variance

Number of studies combined: k = 7

Л						
4.		OR		95%-CI	Z	p-value
	Fixed effect model	0.8969	[0.8405;	0.9570]	-3.29	0.0010
	Random effects model	0.8763	[0.7743;	0.9917]	-2.09	0.0365

```
Quantifying heterogeneity:
tau^2 = 0.0096; H = 1.29 [1.00; 1.99]; I^2 = 39.7% [0.0%; 74.6%]
variance of the true effect sizes
Test of heterogeneity:
    Q d.f. p-value 2.
    9.95 6 0.1269
3.
I<sup>2</sup> ranged between 0%
and 100%
• <25% : low</p>
• 25%-75%: middle
• >75%: high
```

- If P<0.1, there is a significant heterogeneity problem (that means the studies have great variability)
- You need to find out the reasons for heterogeneity, and use randomeffect result instead.

Details on meta-analytical method:

- Mantel-Haenszel method
- DerSimonian-Laird estimator for tau²

Example of Meta-analysis: forest plot

Now we can generate the famous forest plot to visual our result
> forest(result)

We can see Aspirin seems to help preventing death after myocardial infarction in most of the studies

Therefore, the overall effect is significant (but most likely, the results were highly influenced by the study result of Study 7.

Study	Experin Events	nental Total	C Events	ontrol Total	Odds	Ratio	OR	95%-CI	Weight (fixed)	Weight (random)
1	49	615	67	624		-	0.72	[0.49; 1.06]	3.2%	8.2%
2	44	758	64	771		ł	0.68	[0.46; 1.01]	3.1%	7.8%
3	102	832	126	850		+	0.80	[0.61; 1.06]	5.7%	13.2%
4	32	317	38	309			0.80	[0.49; 1.32]	1.8%	5.4%
5	85	810	52	406		<u> </u>	0.80	[0.55; 1.15]	3.2%	8.9%
6	246	2267	219	2257	- i -		1.13	[0.93; 1.37]	10.2%	20.7%
7	1570	8587	1720	8600			0.89	[0.83; 0.97]	72.9%	35.8%
					1					
Fixed effect model		14186		13817			0.90	[0.84; 0.96]	100.0%	
Random effects model					\sim		0.88	[0.77; 0.99]		100.0%
Heterogeneity: $I^2 = 40\%$, τ^2	$^{2} = 0.0096$	p = 0.	13							
-		-			0.5	1 2				

For the next step, let's consider the potential publication bias in this meta-analysis # We will use (Supper Plet' to visual the bias

We will use 'Funnel Plot' to visual the bias

A funnel plot is a scatter plot of intervention effect estimates against a measure of study precision.

Asymmetry in the funnel plot suggest there might be a publication bias for the study

The bias could be due to

- Reporting bias or selective reporting
- Poor methodological quality (e.g. sample size too small)
- Heterogeneity among studies
- Simply by chance

When you have studies < 10, funnel plot is not suggested for judging the publication bias (lack of power)

Example of Meta-analysis: asymmetry analysis

Asymmetry analysis

> funnel(result)

If you have studies > 10, you can use this function to test your publication bias > metabias(result,method.bias="peters") Warning message: In print.metabias(x) : Number of studies (k=7) too small to test for small study effects (k.min=10). Change argument 'k.min' if appropriate. # We do see Asymmetry in the funnel plot, we can adjust our results using either trim and filled or copas model. > tf1 <- trimfill(result, comb.fixed=TRUE)</pre> > summary(tf1) Number of studies combined: k = 10 (with 3 added studies) 95%-CI OR z p-value 0.9140 [0.8587; 0.9727] -2.83 Fixed effect model 0.0047 Random effects model 0.9231 [0.8252; 1.0327] -1.40 0.1622 Quantifying heterogeneity: tau² = 0.0102; H = 1.26 [1.00; 1.83]; I² = 37.4% [0.0%; 70.1%] Test of heterogeneity: Q d.f. p-value 0.05 Standard Error 9 0.1099 14.37 15 Details on meta-analytical method: 6 Inverse variance method 0.25 - DerSimonian-Laird estimator for tau² 0.6 0.8 1.0 1.2 1.4 Odds Ratio

Trim-and-fill method to adjust for funnel plot asymmetry
 funnel(tf1)

Example of Meta-analysis: sensitivity test

We can exclude 1 study a time to check the meta-analysis results
each time
> metainf(necult_neeled_"fixed")

> metainf(result, pooled="fixed")

Influential analysis (Fixed effect model)

		OR		95%-CI	p-value	tau^2	I^2
Omitting	1	0.9027	[0.8452;	0.9641]	0.0023	0.0099	42.3%
Omitting	2	0.9038	[0.8462;	0.9652]	0.0026	0.0082	37.9%
Omitting	3	0.9025	[0.8443;	0.9648]	0.0026	0.0129	46.3%
Omitting	4	0.8986	[0.8417;	0.9594]	0.0014	0.0123	48.7%
Omitting	5	0.9001	[0.8427;	0.9615]	0.0018	0.0124	47.6%
Omitting	6	0.8702	[0.8122;	0.9324]	< 0.0001	0.0000	0.0%
Omitting	7	0.9020	[0.7965;	1.0214]	0.1040	0.0268	49.7%

Pooled estimate 0.8969 [0.8405; 0.9570] 0.0010 0.0096 39.7%

Details on meta-analytical method:

- Mantel-Haenszel method

> forest(metainf(result), comb.fixed=TRUE)

• The result again suggest that the overall results were highly influenced by the study result of Study 7.